- von Mäusen und Menschen -

Chemosensorische Mechanismen sozialer Kommunikation

BfR Workshop
Berlin
06. Mai 2014

Marc Spehr

Lichtenberg-Professor
Institute for Biology II
Department of Chemosensation
RWTH-Aachen University
The mammalian olfactory system
- anatomical and physiological principles -

two major subsystems:

adapted from: Spehr et al., 2006 (CMLS)
The mammalian olfactory system
- anatomical and physiological principles -

two major subsystems:
- Main Olfactory Epithelium
- VNO

adapted from: Spehr et al., 2006 (CMLS)
The mammalian olfactory system
- anatomical and physiological principles -

two major subsystems:
Main Olfactory Epithelium
and
Vomeronasal Organ

adapted from: Spehr et al., 2006 (CMLS)
Unresolved puzzles
- issues in pheromone signaling -

~300 receptors: only a handful receptor – ligand pairs identified
role of G_{ai2} protein signaling still obscure
effector enzyme(s) and downstream second messenger(s) still elusive
transduction channel(s) and their individual functions unclear

from: Spehr et al., 2006 (CMLS)
ESP22 is produced in lacrimal glands (and secreted into juvenile tear fluid)

Identification of putative social chemosignals:
- exocrine gland secreting peptide (ESP) 22 -

LG, lacrimal gland
ESP, exocrine gland secreting peptide
ABP, androgen binding protein
MUP, major urinary protein
MHC, major histocompatibility complex
Identification of putative social chemosignals:
- exocrine gland secreting peptide (ESP) 22 -

ESP22 activates vomeronasal sensory neurons

Ferrero et al., Nature 2013
Identification of putative social chemosignals:
- exocrine gland secreting peptide (ESP) 22 -

ESP22 activates vomeronasal sensory neurons

Ferrero et al., Nature 2013
ESP22-dependent behavior in vomeronasal loss-of-function mutant mice:
- Trpc2−/− males display increased sexual behavior towards juveniles -

Ferrero et al., Nature 2013
ESP22-dependent behavior in wild-type mice:
- ESP22 inhibits male sexual behavior -

Ferrero et al., Nature 2013
concluding remarks

- ESP22 is a lacrimal peptide secreted into tears of juvenile mice
- ESP22 is a juvenile chemosignal that activates a VNO response pathway
- Trpc2^{-/-} mice exhibit increased sexual behavior towards juvenile mice

ESP22 is a juvenile pheromone that blocks sexual behavior through the vomeronasal system
Thank you!

Lab members
Monika Gorin
Lisa M Moeller
Jennifer Spehr
Tobias Ackels
David Fleck
Daniela Drose
Chryssanthi Tsitoura
Damian Droste
Corinna H Engelhardt
Susanne Lipartowski

alumni
Daniela Flügge
Annika Cichy
Thomas Veitinger
Sophie Veitinger
Silke Hagendorf
Annika Triller
Jennifer Hauk

International collaborators

University of Geneva
Stephane Riviere
Ludivine Challet
Ivan Rodriguez

University of Maryland, Baltimore
Steven D. Munger

University of California, LA
Richard K. Zimmer

Harvard University
David Ferrero
Stephen Liberles

University of Tokyo
Takuya Osakada
Kazushige Touhara

The Scripps Research Institute, La Jolla, CA
Angeldeep Kaur
Lisa Stowers

The Hebrew University, Jerusalem
Yoram Ben-Shaul

Bristol University, UK
Peter Brennan

Axxam Inc., Milano
Sabrina Corazza
Silvia Cainarca
Stefan Lohmer

National collaborators

University of Linz
Werner Baumgartner
Agnes Weth

Fraunhofer IVV, Freising
Andrea Büttner
Michael Czerny

Charite Berlin
Eva M. Neuhaus

Local collaborators

RWTH / UKAachen
Ralf Hausmann
Günther Schmalzing

Research Center Jülich
Melanie Söchtig
Frank Müller

RWTH / UKAachen
Eileen Dietzel
Willi Jahnken-Dechent

RWTH Aachen
Maria Kateri

RWTH Aachen
Martijn Arts
Anke Schmeink
Rudolf Mathar

Support

VolkswagenStiftung

Emmy Noether-Programm
Deutsche Forschungsgemeinschaft
Stiftung Mercator

DAAD
Deutscher Akademischer Austausch Dienst
German Academic Exchange Service