Lymphocytic Choriomeningitis Virus

Host species

- natural host: laboratory and wild mice, pet and laboratory hamsters, wild rats, humans
- guinea pig, rats and baboons can be infected experimentally
- some continuous cell lines are virus carrier, e.g. mouse neuroblastoma (N18), baby hamster kidney cells (BHK-21) and transplantable tumor cells of infected animals

Organotropism

- kidney
- salivary gland
- lymphohemopoietic cells
- other organs

Clinical disease

- clinical signs vary with strain of infected animals, route of inoculation and strain of virus
- cerebral form in mice follows artificial intracerebral inoculation
- visceral form in mice shows asymptomatic conjunctivitis, ascites, somnolence after peripheral inoculation
- wasting disease in hamsters (GENOVESI, E.V. 1987)
- febrile illness, gripe-like symptoms in humans (MEATZ, H.M. 1976)
- sensorineural deafness and labyrinth damage, meningeal involvement in humans (HIRSCH, E. 1976)
- autoimmune haemolytic anaemia in different mice strains (COUTELIER, J.P. 1994)

Pathology

- nonsuppurative leptomenigitis, choroiditis
- inflammatory lesions in many organs
Morbidity and mortality

- LCMV strain ARM is avirulent for different hamster strains and guinea pig (GENOVESI, E.V. 1987; GENOVESI, E.V. 1989)
- LCMV strain WE causes 100% mortality in guinea pigs (RIVIERE, Y. 1985) and high morbidity of inbred Syrian golden hamsters
- Prevalence of different hamster inbred strains is known (GENOVESI, E.V. 1987)

Zoonotic potential

- LCMV is the causative agent for hamster associated lymphocytic choriomeningitis infection of humans (LEHMANN-GRUBE, F. 1979; GARMAN, R.H. 1977; MEATZ, H.M. 1976; ACKERMANN, R. 1977)
- Hamster transmit the virus to humans
- Virus is shed in saliva, nasal secretions and urine of infected animals
- Wild mice and rats are a natural reservoir of infection (ACKERMANN, R. 1964; SMITH, A.L. 1993)

Interference with research

Immunology

- Neonatally or congenitally infected mice have a lifelong chronic lymphocytic choriomeningitis virus infection (JAMIESON, B.D. 1987)
- Enhances the interleukin 12-mediated immunotoxicities (ORANGE, J.S. 1995; ORANGE, J.S. 1994)
- LCMV induced different expression of alpha/beta interferons (SANDBERG, K. 1994)

Oncology

- May influence experimental oncology, enhances the frequency of lymphoma after treatment with carcinogen (GARMAN, R.H. 1977)
- Enhances the susceptibility for transplantable tumor cell lines (KOHLER, M. 1990)

Physiology

- Growth hormon deficiency can occur (OLDSTONE, M.B. 1985)
References


Sandberg, K., M. L. Eloranta and I. L. Campbell. 1994. Expression of alpha/beta interfe-
rons (IFN-alpha/beta) and their relationship to IFN-alpha/beta-induced genes in lym-


viruses and Mycoplasma pulmonis among wild house mice (Mus domesticus) in southeastern Australia. J. Wildl. Dis. 29:219-229.

Stanwick, T. L. and B. E. Kirk. 1976. Analysis of baby hamster kidney cells persistently in-

Thomsen, A. R., K. Bro-Jorgensen and B. L. Jensen. 1982. Lymphocytic choriomeningitis
virus-induced immunosuppression: evidence for viral interference with T-cell maturation.

ral proteins and RNAs in BHK cells persistently infected by lymphocytic choriomeningitis

Van-der-Zeijst, B. A., B. E. Noyes, M. E. Mirault, B. Parker, A. D. Osterhaus, E. A. Swyryd,
N. Bleumink, M. C. Horzinek and G. R. Stark. 1983. Persistent infection of some standard
cell lines by lymphocytic choriomeningitis virus: transmission of infection by an intracellu-

Wright, R., D. Johnson, M. Neumann, T. G. Ksiazek, P. Rollin, R. V. Keech, D. J. Bonthius,
menigitis virus syndrome: a Disease that minics congenital toxoplasmosis or cytomegal-


Author: Karin Jacobi, Max-Delbrück-Centrum, Berlin, Germany