Expert Information

From the Working Group on Hygiene

Implication of infectious agents on results of animal experiments

Sialodacryoadenitis Virus / Rat Corona Virus

Status September 2018

Authors: GV-SOLAS Working Group on Hygiene
Contents

Background ... 3
Prevalence .. 3
Host species ... 3
Properties ... 3
Susceptibility ... 3
Organotropism ... 3
Clinical disease .. 3
Pathology .. 4
Morbidity and mortality ... 4
Zoonotic potential ... 4
Interference with research .. 4
Oncology ... 4
Teratology .. 4
Infectiology .. 4
Immunology .. 4
Interactions with other infectious agents .. 4
Toxicology .. 5
Physiology .. 5
Cell biology .. 5
Assisted reproductive technology ... 5
Special considerations .. 5
References .. 6
Disclaimer ... 8
Sialodacryoadenitis Virus / Rat Corona Virus

Background

- Sialodacryoadenitis virus (SDAV) and Parkers’s rat coronavirus (RCV) are two naturally occurring prototype coronaviruses isolated from the rat. Although these viruses are considered to be different strains of one rat coronavirus, this dichotomy and terminology continues because of historical precedent. Like mouse hepatitis virus (MHV), the rat coronavirus group is likely to contain numerous, constantly changing strains that differ in virulence and organ tropism.

Prevalence

- Serological surveys indicate a low prevalence of infections with SDAV/RCV in contemporary rat colonies, i.e. less than 1% of the samplings or sera tested were found to be positive. In a more recent survey, less than 5% of responding institutions in the U.S. reported SDAV in their rat colonies.

Host species

- Rat

Properties

- RNA virus, antigenically related to MHV
- Relatively stable at acid pH
- Can be stored at -60 °C for at least 7 years, but loses infectivity rapidly at room temperature, freezing to -20 °C, heating to -56 °C and exposure to lipid solvents
- Can be propagated in multiple cell lines

Susceptibility

- LEW, WAG/Rij and SHR rats are more susceptible than other strains; less susceptible rat strains include WI, SD, LE and F344.
- In athymic rats SDAV infection is more severe, is persistent and may be fatal.
- Mice have been shown to be susceptible experimentally.

Organotropism

- Salivary glands, lacrimal (incl. Harderian) glands, cervical lymph nodes, thymus and respiratory tract
- Virus is present in tissues for only about one week.

Clinical disease

- Enzootic infections: asymptomatic or mild conjunctivitis in suckling rats
- Epizootic infections: cervical swelling, sneezing, nasal and ocular discharge (serous to seropurulent), porphyrin staining, squinting, photophobia, conjunctivitis, exophthalmus, corneal ulceration and keratokonus
- Most clinical signs disappear in about one week.
Pathology

- Characteristic changes in salivary and lacrimal glands: coagulation necrosis of the ductal epithelium, interstitial edema, mononuclear and polymorphonuclear cell infiltration (during acute stages), squamous metaplasia of ductal and acinar structures (during reparative stages).
- Ocular lesions (secondary to impaired lacrimal function): interstitial keratitis, corneal ulceration, keratoconus, synechia, hypopyon, hyphema, conjunctivitis, megaloglobus with lenticular and retinal degeneration.
- Other changes: focal necrosis of the thymic cortex and medulla, focal necrosis and lymphoid hyperplasia in the cervical lymph nodes, necrotizing rhinitis, tracheitis, focal bronchitits and bronchiolitis, focal interstitial pneumonia\(^1,3,9\).

Morbidity and mortality

- Morbidity: high
- Mortality: virtually none

Zoonotic potential

- No data

Interference with research

Oncology

- Reduction of epidermal growth factor in submaxillary salivary gland\(^14\)
- Higher prevalence of anterior pituitary tumors in infected male F344/NCr rats\(^15\)

Teratology

- No data

Infectiology

- No data

Immunology

- Inhibition of phagocytosis and IL-1 production in alveolar macrophages\(^16\)
- Increase of localized graft-vs.-host disease in salivary and lacrimal glands after bone marrow transplant\(^17\)
- Infected alveolar type I epithelial cells induce expression of CXC chemokines (CINC-2, CINC-3, LIX) in uninfected alveolar type I epithelial cells *in vitro*\(^18\)
- Influx of neutrophils and macrophages and expression of chemokines (LIX, MCP-1, CINC-1, IP-10) and surfactant protein SP-D in the lung\(^19\)
- Polymorphonuclear neutrophils express various proinflammatory cytokines (IL-18, IL-1\(\alpha\), IL-1\(\beta\), TNF-\(\alpha\)) and chemokines (CXCL-1, CXCL-2, IP-10, CXCL-11, CCL-2, CCL-4, CCL-7, CCL-9, CCL-12, CCL-22) when exposed to infected alveolar type I epithelial cells *in vitro*\(^20\)

Interactions with other infectious agents

- Enhancement of nasal colonization with *Haemophilus influenzae* type b in infant rats\(^21\)
- Exacerbation of lesions caused by *Mycoplasma pulmonis*\(^22,23\)
• Increased adherence of *Mycoplasma pulmonis* in tracheas of infected rats\(^{24}\)

Toxicology

• No data

Physiology

• Interference with studies involving eyes, salivary and lacrimal glands or respiratory system\(^{25}\)
• Reduced food consumption and body weight loss or slowing of growth rate\(^{26-28}\)
• Rise in serum amylase\(^{29}\)
• Impaired olfaction and chemoreception for at least two weeks post-exposure\(^{30}\)
• Increase in permeability of the alveolar epithelium\(^{19}\)

Cell biology

• Impaired axonal regeneration and diminished functional recovery in infected rats with unilateral tibial nerve transection\(^{31}\)
• Infected alveolar type I epithelial cells direct neutrophil chemotaxis and inhibit their apoptosis *in vitro*\(^{32}\)

Assisted reproductive technology

• Disorders of estrous cycles and increased embryonic and postnatal mortality\(^{26,27,33}\)

Special considerations

• No data

Actualized by Michael Mähler, Hannover, September 2018
References

Disclaimer

Any use of GV-SOLAS booklets (publications) and statements and the application of the information contained therein are at the express risk of the user. Neither GV-SOLAS nor the authors can accept liability for any accidents or damages of any kind arising from the use of a publication (e.g. resulting from the absence of safety instructions), irrespective of legal grounds. Liability claims against GV-SOLAS and the author for damages of a material or non-material nature caused by the use or non-use of the information or by the use of erroneous and/or incomplete information are in principle excluded. Legal claims and claims for damages are thus excluded. The work, including all content, has been compiled with utmost care. However, GV-SOLAS and the authors assume no responsibility for the currentness, correctness, completeness or quality of the information provided. Printing errors and incorrect information cannot be completely ruled out. GV-SOLAS and the authors accept no liability for the currentness, correctness and completeness of the content of the publications or for printing errors. GV-SOLAS and the authors accept no legal responsibility or liability in any form for incorrect statements and consequences arising therefrom. Responsibility for the content of the internet pages printed in these publications lies solely with the owner of the websites concerned. GV-SOLAS and the authors have no influence on the design and content of third-party websites. GV-SOLAS and the authors therefore distance themselves from all third-party content. Responsibility within the meaning of press legislation lies with the board of GV-SOLAS.